# SILICON VALLEY / SEEDZ

# ENERGY STORAGE SYMPOSIUM

The Emerging Market for Customer-Side Energy Storage

May 21, 2014

Microsoft, Mountain View

**Event Partners** 

































































# **Keynote Presentation**



## JB Straubel

Chief Technology Officer, Tesla Motors







**Energy Storage** 

## **EV** Battery History



- Lead-acid technology was status quo in 1995
- Performance had stagnated
  - Short lifespan
  - Very heavy
  - Short range

#### Lithium ion Made Possible:

- 4 X gravimetric energy density
- 6 X volumetric energy density
- 2 X cycle life



















## Tesla Battery R&D in 2003











## Industry Leading EV Powertrain





### **Battery Energy Density Trend**





## Roadmap – EVs for the Mass Market





#### **Automotive Products and Partnerships**













Mercedes-Benz

### **Focus on Energy Storage Cost**

 $\widehat{\Upsilon}$ 

- Ground-up design as EV-only (Model S)
- > Optimal packaging, safety and performance
- High energy density leads to lower cost

85 kWh Battery Pack



#### Wide variety of cell performance





Energy Check [Charge at C/3 rate with C/20 cut; Discharge at C/3 rate to 2.7V]





**Market Size** 

#### Planned 2020 Gigafactory Production Exceeds 2013 Global Production





Battery pack cost/kWh reduced >30% by Gen III volume ramp in 2017

Source: IIT Takeshita 2013

#### Gigafactory Process Flow





### Go back to the raw materials cost to begin





### Tesla Gigafactory

| Gigafactory Projected Figures   |                                                  |  |
|---------------------------------|--------------------------------------------------|--|
| 2020 Tesla Vehicle<br>Volume    | ≈500,000/<br>yr                                  |  |
| 2020 Gigafactory Cell<br>Output | 35 GWh/yr                                        |  |
| 2020 Gigafactory Pack<br>Output | 50 GWh/yr                                        |  |
| Space Requirement               | Up to 10M<br>ft <sup>2</sup><br>w/ 1-2<br>levels |  |
| Total Land Area (acres)         | 500-1000                                         |  |
| Employees                       | ≈6,500                                           |  |

New Local Renewables Solar and Wind

Rendering

#### **Stationary Storage with Tesla Motors**



#### Goal: Enable Clean Transportation

- Electric Vehicles should to be paired with a clean, low-carbon grid
- Storage enables less carbon intense grid
- Tesla has the highest performance, lowest cost, storage solution at massive (Gigawatt) scale



#### Behind the Meter Concept w/ Solar Net Metering





### **Behind the Meter Storage Aggregation**



TESLA

 $10 \times 10 \text{kWh} = 100 \text{kWh}$ 



Customer Ownership

#### **Behind the Meter Storage Aggregation**





#### **Behind the Meter Storage Aggregation**



 $60 \times 10 \text{kWh} = 600 \text{kWh}$ TESLA 100,000 homes x 10kWh = 1,000MWh = 1GWh**Aggregation** Company **Utility or ISO** Customer **Electric Utility** Ownership Ownership

#### **Stationary Storage Applications**



#### **Downstream (savings)**



- Load Shifting: Reduce energy costs by charging battery at night and using that energy during the day
- Peak Shaving: Lower demand charges by smoothing demand
- Demand Response Retail market participation
- Grid Services Capacity/resource adequacy, frequency regulation, non-spin reserve
- Capacity Firming Support adoption of renewables

Upstream (revenue)

### **Energy Storage Product Overview**









| <b>Product Line</b> | Automotive      | Residential   | Commercial        |
|---------------------|-----------------|---------------|-------------------|
| Power/Energy        | 310 kW / 85 kWh | 5 kW / 10 kWh | 200 kW / 400 kWh+ |



#### Power Buffering at Supercharger in CA (Tejon Ranch)





## Busiest recent day (Sun 5/18)





#### CAISO System Load for May 19th, 2014





#### **Residential Electric Rates**





#### **Residential Electric Rates**



TESLA



### **Stationary Storage with Tesla Motors**





#### 400 kWh Scalable System





**1MW / 2 MWh** 



200kW / 400 kWh



Tesla Factory Fremont, CA

### 400 kWh Building Block









#### Electrical

| Voltage                                  | 208 or 480 VAC    |
|------------------------------------------|-------------------|
| Continuous Charge/ Discharge Power (2hr) | 200 kW            |
| Rated Storage Capacity*                  | 400 kWh           |
| System Efficiency @ C/2                  | 89% / 80% 1way/RT |
| System Efficiency @ C/4                  | 93% / 86% 1way/RT |

<sup>\*</sup>Net energy delivered at AC voltage, based on 2hr discharge at rated power

#### Mechanical & Mounting

| Packaging  | 10 ft. Steel Pallet                       |
|------------|-------------------------------------------|
| Weight     | 8,000 kg / 17,637 lb.                     |
| Dimensions | 1750 x 2500 x 1500mm /<br>69 x 99 x 59 in |

#### Regulatory

| Lithium-Ion Cells | UL 1642 |
|-------------------|---------|
| Power Electronics | UL 1741 |
| System (planned)  | UL 1973 |







# **Keynote Presentation**



## JB Straubel

Chief Technology Officer, Tesla Motors



# SILICON VALLEY / SEEDZ

# ENERGY STORAGE SYMPOSIUM

The Emerging Market for Customer-Side Energy Storage

May 21, 2014

Microsoft, Mountain View

**Event Partners** 































































